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1 Introduction

In the last yearsm any steps have been taken toward a better understanding
of the dualities between eld theory and string theory. O ne direction was
initiated in [I] and consisted In studying the large N dualities In the context
of type A topological strings. This topological duality was em bedded in
the physical superstring theory in ] and then further developed in 3,14, (5,
[6,2,18,9] (see also [0, 17, 02] for an altemative approach, involving brane
con gurations). Them ain result ofthese studieswas am ethod of calculating
the e ective superpotential ofa fourdim ensional eld theory using aspects of
the ux con gurations and of the geom etry of the com pact/transverse space.

It is natural to suspect that sin ilar dualities exist for the type B topolog-
ical strings on C alabiY au m anifolds. T hey have been discussed in a series of
papersby D ikgraafand Vafa [14,[15]. O n the closed string side of the duality
the e ective superpotential of the fourdim ensional gauge theory is generated
by the GukovVafaW itten (GVW ) superpotential [3]. On the open string
side of the duality the fourdin ensional gauge theory is realized by w rapping
D branes on certain 2-cycles and the e ective superpotential is generated by
the topologicalopen string theory living on these cycles. T his is described by



the holom orphic C hem-Sin ons theory which becom es a sin plem atrix m odel
w ith the potential given by the superpotential of the gauge theory. Buiding
on these results, a stronger clain has been argued in [16], stating that for a
class of N = 1 theories, wih elds In the adjpint and bifuindam ental repre—
sentations of the gauge group, the e ective superpotential can be expressad

In term s of the planar free energy of thism atrix m odel. Using eld theory
techniques it was shown that, for m odels w ith one chiral eld in the ad-
JPint representation and a tree level superpotential W ( ), the truncation to

planar diagram s appeared due to the holom orphy of the expected e ective
action [18] and/or to the cancellation of dependence on m om enta between
the bosonic and ferm ionic integrals [11].

Tt is Interesting to extend the original argum ents of D ikgraafand Vafa to
Include elds In other representations of the gauge group. The case of elds
In the fundam ental representation was discussed extensively in 20H39] (see
also [40] for progress in other directions), in general w ithout reference to
any possible string theory realization of such theories'. It tums out that
the m atrix/gauge theory relation in plies that the avor contrdbution to the
e ective superpotential is exactly taken into account by the onedboundary
free energy of the corresponding m atrix m odel 211,125,130, [374].

Tt ishowever rather di cul to extend these resuls to theoriesw ith m ass-
less avor elds. Indeed, in this case the low energy theory is not described
only in term s of the glueball super eld as the naive m atrix m odel predicts,
but it m ust also contain quark bilinears. An attem pt to handl this case was
Introduced in [24] and requires the introduction of delta functions relating
them atrix m odel avor eldsw ith the corresponding gauge theory m esons.
An altermate suggestion was presented in [30] and Involves deform ing the
naive m atrix m odelby m ass termm s for allm assless elds and then com puting
the superpotential from the onedboundary free energy. The gauge theory
superpotential is obtained by integrating in, in the gauge theory sense, the

elds that were origihally m assless and then taking the m assless Iim it. Fi-
nally, these two procedures were shown to be equivalent in [39]. There the
gauge theory meson eld is denti ed w ith the Lagrange m ultiplier enforcing
the m assless lim it.

In this paper we reconsider the geom etric argum ents which led to the
m atrix m odel/gauge theory dualiy. F irst we generalize the results of [3] to

'E xceptions are references [31l] and [33], w here the approach considered isdi erent from
the one we use In our paper



the case ofan ad pint eld of arbitrary m ass aswell as to the case of m assless
quarks. A s the results of [14, [15, [16]] were based on geom etric transitions
relating open and closed string theories, our new resuls shed a new light on
the m atrix/gauge theory relation in the presence ofm assless elds. W e use
the T -dualbrane con gurations [10, 11,17, [13] to understand the dynam ics
of the el theory, as the m ass of the adpint eld as well as the m ass and
vevsofthe eldstransform ing in the fundam ental representation of the gauge
group can be read from the positions of the di erent branes.

It is In portant to stress that in our treatm ent the avor elds are de-
scribed by D 5 branes w rapping noncom pact tw o—<ycles and these branes ex—
ist on both sides of the transition. This is very sim ilar to the situations
encountered In the analysis of defect CFT —s [b3]. O n the open string theory
side the gauge theory is realized on the comm on part of the world volum e
of D 5 branes w rapping the com pact P* cyclk of the an all resolution of the
conifold and of D 5 branes w rapping the noncom pact P* cycles. Because of
the noncom pactness of the D 5 branes w rapping the noncom pact cycles the
open strings stretching between them yield no dynam ical elds. On this side
of the duality the gauge theory e ective superpotential w ill be generated by
the dynam ics of open strings govemed by the holom orphic Chem-Sin ons
theory [Z3].

A fter the geom etric transition (which corresponds to the strong coupling
Iim it of gauge theory) the D 5 branes wrapping the com pact cycles are re—
placed by ux. T he branes w rapping noncom pact cycles survive the transi-
tion and can be Interpreted as probes of the deform ed geom etry with ux.
They give rise to dynam ical elds which, roughly speaking we will m ake
this precise Jater), can be denti ed with the gauge theory m esons. In this
form ulation of the gauge theory the e ective superpotential receives two con—
ceptually di erent contributions. The rst part is the ux-generated super-
potential while the second part is given by the dynam ics of open strings
starting and ending on the rem aining D 5 branes. T his Jatter part reproduces
the results of 21l] for m assive avor elds as well as the ones previously
obtained in [46] for the m assless ones.

Finally, we explain the appearance of the delta function dentifying the
gauge theory m eson and the m atrix m odel quark bilinear both from a topo—
logical string perspective as well as using the M 5 brane dynam ics.

Before proceeding In the follow ng sections w ith the geom etric analysis
¥t us rst summ arize the gauge theory results we w ill recover, nam ely the
superpotential for an N = 1 gauge theory with both m assive and m assless



quarks, a m assive eld in the ad pint representation of the gauge group and
Y ukaw a interactions.

1.1 Field theory results for arbitrary m ass for the ad joint eld

Consider an N = 2 theory with gauge group U (N .) and m assive and m ass—
less quarks and consider breaking supersymm etry to N = 1 by tuming on
arbitrary m ass term for the ad pint chiralmultiplet as well as allow iIng the
Y ukaw a coupling to be di erent from the gauge coupling. D enoting the m as-
sive quarks by Q *) and 0'?, the tree level superpotential is:

P
W = 29TrD Ql+m TrpPo®1+ Tr ? 1)

To discuss the H iggs branch of this theory one rst integrates out the ad pint
eld . The renom alization group xes the dynam ical scale of the resulting
theory to be

3N N ¢ N. 2Nc¢ N ¢

N=1 = N =2 2)

w hile standard nonrenom alization theorem argum ents im ply that perturba-
tively the superpotential is just

2

g
Wo= - Trle) Q)]+ m TrD YO 3)
For ! 1 ,thissuperpotential approaches zero and we then ocbtain N = 1

SQCD.

U sing sym m etry and holom orphy argum ents as well as an oothness in the
Imitg! O onecan show that, if N« N. 1, the e ective superpotential
of this theory is just

2 3 1
2 3N¢ N g N¢ ng
W= 2 Tr[Q0)QQ) ]+ m TrR WO W)+ . N.)4-Y=t 5 (4)
2 detQ Q)

where the last term represents the nonperturbative contributions. At nite
values for the m ass of the adpint eld and generic values of the m ass of the
quarks, the expectation value ofthemeson eld M ;5 = Q 0’y hastwo typesof
diagonal entries [46]. A s the m ass of the ad pint eld is taken to in niy all
these vacua run away to In nity and there isno vacuum Jft at nite distance
In themoduli space of N = 1 SQCD w ith m asskess quarks.



A s stated previously, we w ill recover the superpotential [4) (and thus all
its consequences) from geom etric considerations. W e also nd a geom etric
interpretation of the “ntegrating in/outm ethod" of [42]. To achieve this, we
w i1l begin by discussing the an all resolution of the conifold in the case of

nite adjpint m ass.

2 Engineering of m assive adjoint elds and m assless
avors

Tn this section we describe the details of the geom etric engineering of eld
theories w ith an adjpint eld of nite m ass and m assive and m assless avor

elds. W ebegin by review Ing som e results of [12] conceming the construction
of N = 2 el theories as well as the addition of elds in the fundam ental
representation of the gauge group . W e then proceed to break supersym m etry
by a niemassfortheadjpint eld aswellasto nd the geom etric interpre-
tation of the gauge theory meson eld. In the next section we w ill discuss
the geom etric transition of this sstup.

2.1 N = 2 theories from G eom etry

The eld theory of interest is realized on the world volum e of (fractional)
branes whose transverse goace is the tensor product of an ADE singularity
w ith a two-din ensional plane. T he resolved space contains a collection of P*
cycles, together w ith their normm al bundles. For each cyclk this isO ( 2)
O (0). The O (0) Dbers represent the Coulomb branch of the gauge theory.
Inclusion of elds In the fiindam ental representation of the gauge group as
well as breaking of supersymm etry toN = 1 by a nite m ass param eter for
the chiralm ultiplet in the N = 2 vector m ultiplet is, to som e extent, clearer
In the brane realization of the theory. W e will sum m arize this description
which is related to the geom etric one by T duality. For this we need to
exam Ine in slightly m ore detail the geom etric description.

T he total space of the nom albundle over the i+th P! can be covered w ith
wo patchesciS and CiN ;whereN and S refer to the N orth and South pole

of the corresponding P cyck. The transition finctions are given by

Z{= - Y= Y77 X{=X; : (5)
1



C learly, the coordinate X ; param eterizes the trivial bers O (0) while the
rem aining coordinates describe the total space of O ( 2) . To plumb the

set of P* cycles (together w ith their nom albundles) and reconstruct the filll
Foace one uses certain identi cations dictated by the ADE D ynkin diagram
associated to the chosen sihgularity.

An N = 2 el theory is constructed by wrapping D5 branes on the
p? cycles. T he precise interactions of this theory depend on the singularity
we started w ith, ie. they depend on the intersection of the P! cycles. For
exam ple, In the case of a resolved A, singulariy, the n copies of O ( 2) .
are connected by the identi cation

1

YO Zyy Z90 Yao X! X ©)
which m eans that the north polk of the ith P cyclk m eets the south pok
of the # 1-th P’ cycle. By considering such a singularity together w ith N ;
D5 branes on the #th P' cyck we have a gauge theory with gauge group

L ,U ;) and hypemm ultipletsF;; Fi;i= 1; ;n 1 In the bifindam ental
representations (N ;N 4, 1) and (N ;N ;, 1) resgoectively, as well as a superpo—
tential consisting of Yukaw a interactionsofthe eldsin N ;N 1), N ;N4 1)
and (N4 ;N 1)

To translate the geom etrical picture into a brane con guration we split

the angular and radial directions of the P! cycls, and we reduce the geo—
m etrical picture to one where the angular direction is rem oved. Thism eans
oconsidering a \skeleton" of the geom etrical picture. This can be achieved
by a Tduality [10, 11, 12]. The T duality direction is a circle action on the
nom albundl over the P cycle, given by

Zi! eiZi; Yl' eiYi (7)
72?1 et z% v &Y ;

whose orbits degenerate” along Z; = Y; = Oand 22 = v = 0. By using
©0], the Iines of singularity get m apped into n parallelN S5 branes. The N ;
D 5 branes w rapped on the blown-up Pi cyclk arem apped into N ; D 4 branes

suspended between the i-the and (i+ 1)-th N S5 brane.
In the present discussion we are Interested in the lnclusion of elds trans-
form Ing in the fundam ental representation of the gauge group. In the brane
realization of the theory such elds are introduced by Including sam i=n nite

2By abuse of term fnology we w ill call these degenerate orbits \lnes of sihqularity" .



D 4 branes which end on the NS branes. Let us consider that we have N¢,;

avors In the fundam ental representation of U (N ;) and denote these elds by
0:4;0431=1; ;n. If the fundam ental avors are m assive, we denote their
massesby m ;. They are given by the distance along the N S5 branes between
the endpoint of the corresponding sem =n nite D 4 brane and the D 4 branes
describing the U (N ;) part of the gauge group.

W ith this starting point it is easy to construct the geom etric version of
the setup by perform ing the inverse of (). T he result isthat in the geom etric
picture the eldstransform ing in the findam ental representation ofthe gauge
group are Introduced as D5 branes wrapping non-com pact holom orphic 2—
cycles given by:

Y;=0 or Y’=0; X =m; ®8)

The choices Y; = 0 or Y.)= 0 are dentical, as they describe the sam e point
n the total space.

2.2 N = 1 theories from geom etry; m assless quarks

W e now deform the geom etry by adding superpotentials for the ad pint elds
(ncluding m ass term s). G eneric theories w ithout m atter elds have been
analyzed in detail in [12]. W e discuss here the sim plest m odel, obtained by
adding just them asstemm forthe adjpint chiralmultiplet in theN = 2 vector
multiplets, which breaks supersymmetry to N = 1. ° The superpotential
w 11l therefore be:

1

W &1 2 ©)
2
+ TrE; #1F; Fiuq Fart 05 05+ QQM 195 1))

where ; and 2 are pég if the Yukawa interactions are to pressrve N = 2
supersym m etry, but can have arbitrary values for the N = 1 theories.

For a better understanding we begin by considering a theory w ith gauge
group U N ) and N¢ elds In the fundam ental representation, with m ass
param eters m ;. Before supersymm etry breaking, this is the world volum e

3In this section we consider the el theory and geom etry deform ations when the m ass
for the adjpint chiralmultiplet is nite or in nite. A sin ilar discussion appeared inlbé]
for the case of branes probing singularities, whereas in our case we dealw ith D 5 branes
w rapped on blown-up cyclks.



theory of N D 5 branes w rapped on the nontrivial P' cycle ofa blown up A
singularity and N ¢ D 5 branes w rapped on the noncom pact cycles de ned by

Y=0;,X=m; i= 1;:::;m (10)
or
yo= 0; X =m; i= 1;:::55p (11)
w ith
m+p=Ng ¢ 12)

T he brane con guration corresponding to this geom etry is constructed out of
two parallelN S5 branesw ith N D 4 branes suspended between them aswell
asm and p sam iHn nite D 4 branes ending on the left and right N S5 brane,
respectively. In this lJanguage supersym m etry breaking is realizes by rotating
the N S5 branes relative to each-other. The rotation angl is a function of
them ass of the adjpint eld.

The T duality described in the previous section provides the connection
between the rotated brane con guration and geom etry. Roughly soeaking,
rotating the N S5 branes corresponds to  bering the A ; singularity over the
din ensional plane. In other words, the nom al bundke of the blown up P’
ismodied. The elds transform ing in the fundam ental representation are
still described by D 5 branes w rapping noncom pact cycles. Unlke the situ-
ation above, after the rotation the two choices of cycles becom e physically
nequivalent.

Two lim its of geom etry as a function of the m ass of the ad pint are In —
portant to discuss:

P w ith nom albundlk O ( 2) O (0), obtained for a zero m ass for the
adjpint eld. In this Imm it the eld theory has N = 2 supersymm etry, as
discussed in the previous section.

P wih nomalbundlkeO ( 1) O ( 1) (the resoled conibHd), obtained
for an In nite m ass for the adpint eld. In this lin it the eld theory In the
world volime of the D5 branes isN = 1 SQCD lim i, ie. the eld in the
ad pint representation is decoupled.

This latter choice is described by two copies of C°, param etrized by
X ;Y;Z) and X %Y %79, together w ith the transition fiinction:

7= 72 1;x%=2x72;Y%=2v72 (13)



A sdiscussed In [10], the singular conifold is recovered through the blow down
m ap

x=X=X%%y=2Y =Y%u= 2x=x%v=yv=2%" (14)

which in plies that
xy uv=0 (15)

which de nes the conifold at the singular point. Thism ap together w ith {1)
Induce a circle action on the coordinates in the two patches which can be
usad to translate between the brane and geom etric description :

z ! &z ; X! X ; Yy ! et vy (16)
791 et 729, x% & x%; yvOor y?©

The lines of shgularity are Z = Y = Ointhe rstC° and 2%°= X %= 0 i
the second C 2, which are clearly orthogonal. T hus, the brane con guration
corresponding to the an all resolution of the conifold contains two orthogonal
N S5 branes.

Let us now analyze the elds In the fundam ental representation. As
we discussed before, they corresoond to D5 branes w rapping non-com pact
holom orphic cycles

Y=0;, X =m x7)

Xx%=0; Y%= m : (18)

T hus, we notice that after the A, sihgularity was bered over the transverse
two din ensional space, these two cycles are no Ionger equivalent. Indeed, as
the lines of singularity in the geom etry arenow alongtheX and Y °directions,
after a T duality on the above orbit we get two orthogonalN S branes on the
directionsX and Y °. TheD 5 branesw rapped on the com pactPl arem apped
Into nite D 4 branes (between the two orthogonalN S branes) w hile the ones
on the non-com pact holom orphic cycles m ap Into sam i=n nite D 4 branes
which can end on one N S brane or the other.

There arealso N = 1 brane con gurations (and geom etries) which corre-
soond to nite m asses for the ad pint eld. A swe stated above, In term s of
brane con gurations thism eans that the N S branes are neither parallel nor



orthogonal. By a T duality we can add a circle to this \geom etric skeleton"
and obtain a geom etry where the lines of singularity are neither parallel nor
orthogonal. To m ake thism ore concrete, the transition finction X °= X Z is
replaced with X Y= X .7 where X, is som e function of X ; Y and Z . Thus,
the geom etry isnow :

1
7 0= 7 Xx%=x.,72; Y°=v7 19)

Taking
1

X,= X Y7 20)

m adj
and using the blowdown map {I4) we nd the follow ing deform ation of the
singular conifold:

uv Yy X y)= 0 : (21)

madj
In the lin it of in nite m .44 we recover the usual conifold geom etry while in
the Iim it of vanishing m ,q5 rescaling u and v leads to theA; C.
T he orbit {I4) has the form :

7! &7 ; X,! X,; Y! ety ©22)
791 et 7%, x% &x%; v%r yO;

and we obsarve that the degeneration is indeed along the union of com plex
Iines along X . In the rst C° and Y° in the second C°. As prom ised, T -
duality on this orbit produces a con guration of two N S5 branes at an anglke
determ ined by X ..

W e can reach a sin ilar result by starting with the N = 2 geom etry ()
(with i= 1) and deform ing the transition functions to

z'=1=2 ; Y°=YZ?+m.X7Z : 23)

To see what happens when we vary the m ass of the adjpint eld, we switch
again to themap {I4) and nd

uv y2+mAxy= 0 ; (24)

which is the sam e equation we had before, up to a rescaling ofu and v.
T he geom etric transition takes us to a deform ed conifold. Since there
exists a holom orphic change of coordinates which casts equation [24) into

10



that of the conifold, onem ay say that the two geom etries describe the sam e
physics. T his is, how ever, not the case as various boundary conditions change
under these transform ations. A nticipating later argum ents, the boundary
conditions can be naturally chosen in one coordinate system while the com —
putations are easier In the other one; the coordinate transform ation w ill
Introduce a dependence on the m ass of the adpint eld in the boundary
conditions.

Up to now we have discussed the geom etric construction ofm assive elds
In the fiindam ental representation of the gauge group. Our main goal is,
however, to nd a geom etric description of m assless m atter elds. To reach
this goalwe start w ith the brane con guration describing such elds [44] and
then subfct it to T -duality transform ations along the orbit 7).

There are two choices of introducing m atter, one with sam i=n nite D 4
branes and the other w ith D 6 branes. In the follow ing we w illuse D 4 branes
for this purpose and begin by describing the sstup at vanishing string cou—
pling, when all branes are represented by straight hyperplanes.

45

NS5 NSs5° c
89

D 4y

D4,

Figure 1: Brane construction .

To be speci ¢, we consider the con guration in  gure [. The dashed
Iine represents the directions orthogonal on the (456) space. The fact that
the N S brane is not orthogonal on this 3-space corresponds in  eld theory
language to introducing a superpotential quadratic in the chiral super eld
transform ing In the ad pint representation of the gauge group. T his can be

11



easily seen using sym m etry argum ents [46,/144]. TheN = 2 theory is Invariant
underU (1) SU (2) R—symm etry which correspond to rotations in the (45)
and (789) directions, respectively. In the rotated brane con guration SU (2)
is broken to U (1) corresponding to rotations along the N S° directions. D e~
noting by x the coordinate along the N S brane and by y the coordinate along
the N S%one, it follow s that they are proportionaland that the proportional-
ity coe cient is charged under both U (1) R sym m etry groups, w ith charges

of the sam e m agnitude and opposite sign. The only eld theory ob fct w ith
these properties is the m ass of the ad pint eld.

Let us now discuss the interpretation of the position of the end of the
D 4 branes on the N S and N S° branes. Separating the D 4 branes induces
a breaking of the U N ¢) avor symm etry. If the separation is in the (4;5)
direction, then it should be interpreted asa eld theoreticm ass term for the
quarks as this is the only param eter charged under the corresoonding U (1)
symm etry. Ifthe separation isalong theN S °brane this should be interpreted
asbreaking due to a nonvanishing eigenvalue forthem eson eld. Tndeed, this
isthe only eld theoretic obfct charged under the second U (1)g symm etry.

At vanishing string coupling, it ispossible to understand from gure[l the
phenom ena w hich occur when one changes the description of the theory from
having a m assive eld to having a bilinear in that eld wih non vanishing
expectation value. Tndeed, allone has to do isto transform a D 4, brane into
a D4y one. This is possible only by recom bining the D 4, brane w ith one
of the color branes. Under this operation the gauge group is spontaneously
broken, as at vanishing (string) coupling the only way for a bilinear in elds
to have vev is for each of the two factors to have a vev. T hus, in the process
of changing the description of the theory from having a massive eld to
having a bilinear w ith non vanishing vev, the rank of the unbroken gauge
group decreases w ith the num ber of D 4, branes transform ed into D 4y . This
recom bination ofdi erent types ofD 4 branes can be interpreted asthe analog
of the eld-theoretic \integrating in/out" procedure of [42].

At nite coupling it is certainly possible for a com posite operator to ac—
quire a non vanishing vev w ithout its building blocks having one. H owever,
if the vev is Jarger than the dynam ical scale of the theory, the vev can be
treated classically and thus, in the case of quark bilinears, leads to a sponta—
neous breaking of the gauge group aswell. W e will retum to this in a later
section and quantitatively recover this picture from a geom etric description.

This con guration can be easily m apped to the type TIB con guration.
A sdiscussed earlier, the N S branes and the com pact D 4 branes are m apped

12



to the resolved conifold in coordinates (2l); there are two lines of shgularity
em erging from the north and south pol of P', the angle between them being
given by the m ass of the adpint ed. A set of non-com pact P! cycles w ith
D 5 branesw rapping them end on these lines. D epending on their ordientation,
their end point on the north polk line describes them ass of the corregoonding
eld while the end point on the south pol line describes a vev, or vice versa.
A s any geom etry containing a conifold shgularity, this one exhibits a
geom etric transition sim ilar to the standard one. Because of the pressnce
of the D branes on the non-com pact cycles there ism ore inform ation which
needs to be taken through the transition.

3 G eom etric transition w ith fundam ental elds

T he issue of introducing fundam entalm atter in the geom etric transition has
been considered In [3,111],[31]; however, the analysis applies only to a theory
w ith all quarks integrated out (ie. they are allm assive) and only for an
In nitely massive N = 2 adjpint eld. The goal of the present section is to
relax these assum ptions and recover the m uch richer set of results described
in section[IJl. Th particular, since the Iow energy theory isdescribed in term s
of m esons, an essential ingredient is their geom etric interpretation.

T here are two di erent ways of describing this. O ne way is to start from
the brane con guration described above, lift it to M —theory and then m ap
the results to the deform ed geom etry, paying particular attention to the vev—s
of the fundam ental elds. An altemative way is to start from a brane con g—
uration describing a eld theory w ith bifindam ental elds which reduces to
the theory of Interest in a certain lim i, describe the transition for its associ-
ated geom etry and then take the appropriate lin it at the end. T he issue of
vev—s for the bifiindam ental eldswas discussed for the brane con gurations
n [Bll] and in the context of the geom etric transition in [12]. T he form er Iine
ofreasoning em phasizes the behavior ofthe avor branesunder the geom etric
transition while som ew hat obscuring the precise identi cation of the vevs of
the fundam ental elds. The latter argum ent identi es m ore clearly the vev
of the findam ental elds in the deform ed geom etry while som ew hat obscur-
Ing the behavior of avor branes under the transition. For these reasons as
well as for others which w ill becom e clear in section [, we w ill describe both
approaches.

Starting w ith the brane con guration in gurel[l], the strong coupling lin it
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is understood as lifting it to M -theory together w ith taking the ssparation
between the two N S5 branes to zero. A rgum ents sim ilar to those in [LOH13]
Imply that the brane con guration becom es an M 5 brane with the world
volum e [45, 144, 149] given by the curve

Yy
4m adj

yR = R=x (25)
where R and y are the coordinates along the two N S5 branes whilke x is the
coordinate along the dashed linein gurelll. Asx ! 1 wehaveeithery= 0
ory ! mux. In these coordinates y is the coordinate along the dashed
Iine, y = xg + iXg, whilk x is the coordinate along N S5, x = x4 + ixs. The
coe cient of v 2 can be freely adjisted to any non vanishing value, whike
rem aining proportional to the m ass of the adpint eld. W e will use this
freedom to dentify m .45 w ith the m ass param eter of the ad pint eld.

The M theory lift of a D 4 brane describing a eld iIn the fundam ental
representation is a cigar-shaped M 5 brane which intersects the curve (29)
in exactly one point, say P . A s this point is constrained to lie on 29) only
one of its coordinates can be arbitrarily chosen. T his is consistent w ith the

eld theory expectation that, given the superpotentialand a m ass param eter
there is a discrete set of choices for the expectation value of them eson eld.
Conversly, given the superpotential and an expectation value of the m eson

eld, them ass param eter is uniquely determ ined. Th type TTIA language, this
represents a set of sam +n nite D 4 branes ending on an N S5 brane whose
world volum e is given by (2H).

The discussion in the previous section suggests that the coordinate of
P along the x direction equals the m ass of the corresponding eld whilke its
coordinate along the y direction represents the expectation value of them eson

eld built out of the corresponding eld. T herefore, the strong coupling/M —
theory analog of the \integrating In/out" procedure of [42] represents the
transition between the two choices of which one of the two coordinates of the
point P is xed as \boundary condition".

W e want to em phasize that during the transition only the com pact pt
cycle shrinks, but the non-com pact 2—<cycles ram ain unchanged. Tn type TIA
theory this represents the fact that at strong coupling there still exist sam i
In nite D 4 branes which end on the N S5 whose world volum e is the curve
23).

Let usnow tum to the other description of the geom etric transition w ith

avor elds. The starting point isa theory withUN.) U®N[) UN/)
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asgauge group. An N = 1 brane con guration realizing this theory involes
three N S5 branes, say A, B and C, at di erent points in the x° direction,
whose progction on a (x;y) plane form s a triangle, w ith comers denoted by
Ing , Inc and Igc , respectively. A long the x° direction and at each comer of
this trdangle lie N, NI and N D 4 branes, respectively. For de niteness,
ket us assum e that there are N, between B and C, N{ between A and B

and N between A and C . This brane con guration was analyzed in detail
In 6] where it was obtained by rotating an N = 2 brane con guration

describing a gauge theory with gauge group U W+ N7 ) UN! + Nf)

and bifindam ental elds. Am ong other things, it was shown that the dis-
tance m easured along the B brane between Tnz and Iz isequated with the
m ass of the bifindam ental eldswhil the distance m easured in the direction

orthogonal to the B krane between Iz and I is equated wih the vev of
the o -diagonal com ponents of the scalar eld in the adjpint representation

which break U .+ N ) toU N ,).

To recover the brane con guration described in the previous section we
take the A brane to In nity i the x°® direction, w ithout crossing the other
N S branes (in what follow s, we denote this process as a decoupling 1im it) ; in
thism it the U N{ ) and U (N§4 ) gauge bosons becom e nondynam ical, the
gauge sym m etry becom es global. Thus, the bifundam ental elds survive as
fundam entals of U (N ).

T his setup was described geom etrically in [14] iIn term s of a resolved A,
singularity bered over a plane. Am ong other things, it was shown that in
the slices of xed x° and x’ there exists a 1lcyclke and the inverse in age
under the profction onto these slices of the com pact dom ain bounded by it
is hom otopic to an S°. Tt was also shown that this cycle exists on both sides
of the geom etric transition. Since its size is proportional to the expectation
value of the bifundam ental elds, it can be usad to give an Invariant m eaning
for this expectation valie in the deform ed geom etry* .

T he geom etric version of the fact that the brane A is taken to in niy
is that the leffm ost singularity line is taken to in nity without crossing the
other two lines. In this lim it two of the three P* cycles decom pactify and
we recover the geom etry described in the previous section. Tt is also clear

4T he results of [1J] describe the existence of tw o types of deform ations in the deform ed
geom etry. The rsttype are the \nom alizable deform ations" and correspond to dynam ical
quantities In  eld theory (eg. the glueball super eld). The second type are the \non-—
nom alizable deform ations" and correspond to non-dynam ical quantities In  eld theory
(as the vev of the bifindam ental els).
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that this lim it can be taken as long as no geom etric transition occurs for
the 2—cycles which decom pactify. Indeed, the geom etric transition is the
geom etric version of the strong coupling lin it while the decom pacti cation
is the geom etric im age of a an all coupling lin it.

In the resolved geom etry, the decoupling lin it leads to a degeneration of
the \non-nom alizable" S° cycle into an in nitely thin and in nitely long
subm anifold which touches allP' cycles. Its profction onto the leftm ost
Iine of sihgularities descrlbes the m ass of the m assive avor elds while its
progction onto the direction orthogonal to it is proportional to the m eson
expectation value.

If the decoupling lim it is taken after a geom etric transition occurs for the
P! cycle between the two rightm ost sihgularity lines, the \non-norm alizablke"
S°3 cycle degenerates into an i nitely thin and in nitely ong subm anifold
which touches the special Lagrangian cyck and the noncom pact P* cycles.

In term s of brane con gurations, the two pictures corresoond to m oving
the brane A to In nity before or after the N S5 branesB and C are deform ed
Into a unique one. From thispoint of view it it clear that the decoupling Iim it
and the deform ation of the N S5 branes commute. Tn geom etric term s the
two pictures correspond to decom pactifying two P cycles before and after
a geom etric transition occurs for the third one; here, the decom pacti cation
com m utes w ith the geom etric transition because of the geom etric nature of
each process.

C om paring the tw o pictures In plies that them ass of them assive elds is
given by the distance between the special Lagrangian cycle and the noncom —
pact P' cyclk ending above the point Ins . D enoting this direction by x, the
vev of the rem alning elds transform Ing in the fundam ental representation of
the gauge group is given by the pro fction of the distance betw een the special
Lagrangian cyck and the noncom pact P cycle ending above the pont Inc
onto the nom alto x. T his sharpens the identi cations suggested by the st
description of avor elds.

4 E ective superpotential at strong coupling

A fter having discussed all the details of the geom etric transition foran ad pint

ed of nite mass as well as for m assive and m assless avor elds lt us
proceed to the com putation of the e ective superpotential. Tn this section
w e recover the gauge theory results {4) (or rather their form w hen the glueball
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super el isincluded) from the deform ed geom etry w ith branesand uxes. In
the next section we w ill nd the sam e results by expressing the com putations
In term s of a m atrix m odel.

Thus, the starting point is a closed string badkground given by the de-
form ed conifold In the coordinates n which its de ning equation is:

pa+ y X )= : (26)

4m »
In this geom etry there exist D5, branes wrapping the noncom pact cycles
de ned by the equation g= 0 and boundary condition® x( ! 1 )= x as
well as D 5y de ned by the sam e equation g = 0 but a di erent boundary
conditiony! 1 )=y .
A sdiscussed in (3], the superpotential of the gauge theory dualto a con—
guration of uxesand branes consists of two parts. The rstpart represents
the contribution of uxes and it is given by the GVW superpotential:

Wp = ~E 27)

The second part consists of the contribution of branes. The theory living
on the part of the branes wrapping the cycles is given by the holom orphic
Chem-Sin ons action [R2]. Their contrbbution to the superpotential can be
com puted by evaluating thisaction on a (generic) classical eld con guration.
This operation, which essentially integrates out at the classical level the

uctuations around the classical solution, describes the obstructions to the
deform ation of the branes. A swe are Interested In evaluating this action on
a non-com pact brane, the boundary conditions at in nity are kept xed.

In the context of the conifold geom etry describing an in nitely m assive
adjpint eld and forbranesdescribingm assive avor elds, both these contri-
butions were com puted in [3]. W e w ill extend this com putation to describe
a nite m ass param eter for the adpint eld as well as avor elds which
develop large expectation values for their corresponding m esons.

To evaluate the superpotential [21) one usually writes it In temm s of pe—
riods of aswellas uxes through the dualcycles.

z z z z

Wp = Hys Frr = S N¢ (28)
A B B A

5A sdescribed in [43], it is necessary to in pose a boundary condition only in one of the
x or y direction, as the other one is determ ined by equation [4).
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S = = = Hys N.= Frr (29)

The periods of over compact cycles are invariant under changes of
coordinates which do not change the com plex structure. Thus, it is easy to
see that the relation between S and the deform ation param eter  is dentical
totheone In thecaseofin nitem assfortheadpint eld. Indeed, Introducing

the coordinates
p— Yy p—

u="mzXx v=§pm: ma X (30)
A

one can w rite the equation [28) as the usualbig resolution of the conifold:
uw v = (31)

T his change of coordinates is holom orphic. T herefore, by w riting the cycle
as a 2-sphere bered over a segm ent, we nd [3]:

=2
Z 727 g

S = = u? du=— (32)
A 4

1=2

T his ishowever not the case for periods over non-com pact cycles. Tndeed,
the corresponding iIntegrals are de ned wih a cuto which changes under
coordinate transform ations. In the (u;v) coordinates, the B <yclk can be
de ned as an S? bration over a curve startihg at u =  and ending at
som e cuto . However, we are interested in the periods com puted in the
(x;v) coordinates and thus the cuto 1n the ufplane should be derived from
a more fundam ental cuto in the x-plane. The two cuto s are related by
(20); thus, the period integralde ning for nitem ass for the adpint eld

p_— " #

1 2

= u? du== ‘mp+ = .
2 4 4

+ O (i) (33)
S 0

1=2

Ignoring the term swhich are polynom ially divergent as the cuto istaken
to In nity, it follow s that the GVW superpotential is

2Ncm§c :
WF:S hT-‘-NC (34)
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where we also usad the usual de nition for the dynam ical scale in term s of
the cuto and the gauge coupling (ak a. \dim ensional tranam utation")

MNe= g MNe (35)

Equation [34) is ndeed the correct gaugetheoretic expressions for en—
ergy scales less than m, @ the adpint eld is integrated out and its m ass
contrbutes to the dynam ical scale:

SR (36)

W e now tum to the contridbution of the D 5 branes describing the elds
charged under global sym m etry groups. A s described above, they contribute
to the e ective superpotential an am ount equal to the holom orphic C hem-—
Sim ons action (which is the theory living on the part of the brane w rapping
the cycle) evaluated on a representative of the hom ology class of the non—
com pact 2-cycles w ith generic m oduli dependence.

A sin the case ofthe B ¢cycle described above, a proper de nition for these
cycles requires a choice of boundary conditions’ .

To begin w ith, we recall that the C alabiY au space of Interest is given by

pa= F x;v) 37

embedded in C*. In this space, the noncom pact cycles we are interested n
are de ned by [43]:

C: Fx;v)=0 g=0 xp! 1)=x yp! 1)=y (38)

where x and y represent boundary conditions and the function F (x;y) is
given by the right-hand-side of the equation [£H). The coordinate param e—
terizing the cycle is denoted by p while the position of the cycle in the total

soace isdescribed by a point (x ;y ) on the curve : F (x;y) = 0.
In [43] it was shown that the holom orphic C hem-Sin ons action can be
w ritten as: 7 7
S = % d = % d (39)

cp cp

where and are coordinates param eterizing the curve and describe one
of the directions the cycle is allowed to uctuate in. This in tum implies

®M ore form ally, they are cycles in a nonstandard relative hom ology group, or which
the constraint is given by the boundary conditions.
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that only one of them can be chosen independently as boundary condition;
the other one is determm ined by the requirement that ( ; ) leson .Asthe

Integral over p factorizes, we are left w ith
z z

S = d = d (40)

In choosing the boundary conditions at iIn nity we have to m ake sure
that they represent a stable point on the curve at in niy. In other words,
the intersection point between the cycle and = (! 1) should beone
of the critical points on the direction along which boundary conditions are
chosen.

W ith these clari cations, lt us now evaliate (40) for D5, . In (X; V)
coordinates, their position on the x axis near the origin of the coordinate
along the cycle describes the m ass of the corresponding quarks. Thus, it is
naturalto x the boundary conditions at in nity in these coordinates. W e
w ill nevertheless evaluate the action in the (u;v) space.

A s explained above, we x the x such that it is a critical point of y (x).
F ixing the origin on atx=m and solving F (x;y)= 0 fory we nd that
one of the critical points is at in niy, which we regularize by Introducing
a cuto 0. Transhting to the Initial origih on we nd that we must
Integrate over

X2 Mm; o+m] : (41)

This interval can easily be translated into an integration dom ain for u. Ig—
noring term s which are polynom ially divergent as the regqulator is rem oved
aswellas term s which vanish in this lim i, it follow s that the superpotential

1(o+gl)pﬂq7
W, = = u? du (42)
2 o
m- ma
1 q9—- 1 19— m
= S —+ — 1 4k, S 1 h=+- 1 4k,S) + SIh—
2 4k, S 2 2 0
w here we have Introduced the notation
1
Kk, = > : (43)
mm

W e can easily recover the results of [43] by taking them ass of the ad pint
eld to in nity, or rather equal to the cuto . Tt is not hard to see that the
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only surviving term from the equation above is

Wy, ma ! 1)=S]n£ : (44)
0
Let usnow consider the contribution of D 5y to the e ective superpoten—
tial. A s In the previous situations, we will x the boundary conditions in the
(x;y) space and then translate them to (u; v). In the previous section we ar—
gued that the projction on the y axis of the displacem ent of the D 4, brane
along N S5° can be identi ed with the m eson expectation valie. Thus, we
w ill consider a noncom pact 2-cycle which ends at coordinate y = 4 2 .7

D eterm ining the boundary condition at in nity is slightly m ore involved.

F irst we solve the equation 23) for x (y):

2 2.2

% = w . (45)

dm py
From here we see that there are several critical points. To m ake connection
w ith the brane picture, we would like to pick boundary conditions such that,
asthe coupling constant isdecreased, them esonsw illhave a large expectation
valie. A s there is no critical point at iIn niy for real values of y, we will
choose the brane to end at the critical point at im agihary in nity in the y

direction. )

—4p2'< 2) v )= 4i—2 +O<i> : (46)
y = (g Xy )= l4m :

A 0

T herefore, we have the follow Ing integration dom ain:

p— .
y24 20 5; M ] 47)

which In (u; v) coordinates becom es
3

v2 p—0 5; M ] (48)
m a

upon assum ing that M is large.

"T he num erical factor can be traced to a sin ilar factor in equation PH). Tt is related
to adi erent choice of y coordinate com pared to [46].
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T hus, we are required to com pute:

P -
s 2M

1 T 1t
Wy = = v+ dv= - v? dv

2P 2P
22 22

it 2

A A
M2 2
- +Smn—2 (49)

2m M

w here we have ignored tem s of order + and - .

W e are now 1In position to construct the full superpotential. H owever,
in com bining equations 34), () and {49) we have to be carefl In count—
Ing the RR ux through the A —<¢yclke. Aswe saw in an earlier section, for
an all coupling, an expectation value for the meson eld is equated w ith an
expectation value for the fundam ental elds. If the expectation value of the
m eson is Jarger than the dynam ical scale but an aller that the cuto , a sim ilar
denti cation is possibl®. Since we assumed M to be large and com parable
to g, this is the regin e we are studying. Thus, the brane picture applies
w fthout m odi cation and the rank of the gauge group is an aller com pared
to the pure gauge theory by an am ount equal to the rank of the expectation
value of the m eson m atrix. T he full superpotential is therefore:

0 1
2(NCN§4)mNcN§4
Wen = SE—2— 2 +N. NYK s
S s
2N M
0 1 5 detm
+ SIh TrM ]+ SJHT
detM 2m of
X 1 1 4d— 1 19—
S — 4+ —— 1 4k, S 1 h=+- 1 4k,S)
n 2 4k, S 2 2 '
MNe N s detm .
_ TrM 2]+ S T _ +N. N
2m » she s detM
X 1 1 d— 1 19—
S —+ —— 1 4k,S 1 hi=+- 1 4k, S) (50)
2 4k, S 2 2

m

8Since the quantum contribution to the expectation valie of the m eson is equalto the

dynam icalscale up to coe cilentsoforder one it follow s that, if it is largerthan , must
be generated at the classical level
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where k, = m?m,, is the dynam ical scale at which the adpint ed
is integrated out, N[ is the number of fundam ental elds combined into
mesons, N I isthe num ber ofm assive fundam ental edsandN ;= N + N[ .

5 E ective superpotential at weak coupling; M atrix
M odels

In this section we recover the eld theoretic e ective superpotential in the

resolved geom etry and provide a geom etric justi cation of certain proposals

which appeared in the relation between the m atrix m odels with m asskss
avors and gauge theory.

5.1 Review of the results for pure gauge theories

The large N duality between open strings (branes) on the resolved geom etry
and closed strings ( uxes) on the deform ed geom etry w as the starting point of
the D ikgraafVafa con cture. T hey argued that the e ective superpotential
of the gauge theory living on the non-com pact part of D 5 branes w rapping
com pact 2—cycles In the resolved geom etry is given by the free energy of the
m atrix m odel built w ith the superpotential of the gauge theory and that this
free energy is equal to the one of the topological TIB superstrings on the
deform ed side.

In the case of the an all resolution of the conifold, the argum ents for this
bold conjpcture rely on the fact that the elds living on the 2-cycls are
govermed by the holom orphic C hem-Sin ons theory [bZ2]aswellason the fact
that a eld theory superpotential can be ncluded in this theory by simply
shifting the action by an am ount equal to the product between the K ahler
class and the superpotential evaluated on 0-form deform ations [b3].

Z R
Z = d od jec o0 W Lok (51)

T hen, the equations of m otion allows one to sest | = 0, as well as restrict
o to the zero m ode. T hus, the partition finction reduces to just an integral

over m atrices: zZ
7= de u='™0 (52)

T he assum ptions of this proposal include the denti cation of the glueball
super eld with the t Hooft coupling of the matrix model: S = N gg. It is
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In portant to em phasize that the dim ension N of the m atrices appearing in
the m atrix m odel is unrelated to the rank of the gauge group N ..

T he original D ikgraafVafa conjpcture was stated for com plex deform a—
tionsof an N = 2;A; singularity. Sin ilar results hold in the case of other
N = 2 singularities, eg. those which lead to quiver gauge theories. In that
case, besdes the integral of the ad pint elds as In (&J), som e extra term s
are required for integrating the bifundam ental elds and the Chem-Sin ons
action is sin pli ed due to localization on the lowest Iying m odes. T hus, one
adds to the superpotential:

X
W i = Tr0 i1 19w 14l Tr0 51 10 450 1] (53)
W e now tum to the discussion of elds in the fundam ental representation
and discuss the geom etric jasti cation of the various procedures of dealing
w ith m assless quarks 24,130, 139].

5.2 M assive and m assless m atrix m odels

T he geom etry and m atrix m odels for gauge theories w ith m assive findam en—
talm atter were related In several papers 24, 135, 31]] (see also [15, 133] for
the case of bifundam ental m atter). Tn [31]] it was suggested that allthe D 5
branes are replaced by RR  uxes which would m ean that all the 2—cycles
shrink and are replaced by S° with ux.

A sdescribed in section 3, the sim plest way to deal, .n a sin ilar way, w ith
both fundam ental and bifuindam ental elds with Yukawa-type superpoten—
tials is to start w ith the product of two gauge groups U N.) U N¢) wih
bifuindam ental elds and to take the coupling constant of the U (N ¢) group
to zero. Thus, this symm etry becom es a global one and the bifindam ental

eldstransform in the fuindam ental or anti-fiindam ental representation ofthe
rem aining gauge group. Thism ethod wasusad in the DV context in [33] and
we will adjust it to our case.

Tt is however worth pointing out that this lim it can be Interpreted ge-
om etrically as a \partial geom etric transition". Indeed, the size of the P*
cycles wrapped by D5 branes is proportional to the inverse of the coupling
constant of the corresponding factor of the gauge group. T hus, the geom et—
ric transition occurs only for the cyclke wrapped by the branes generating
the U (N .) gauge group, while the others rem ain as p* cycles; the vanishing
coupling constant lim it corresponds to decom pactifying them .
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Let usbegin wih the N = 2 theory with product gauge group U (N )
U (N ¢), which is geom etrically engineered as a resolved A, singularity with
N . D5 branes on one P! and N ¢ D5 branes on the other P*. W e then break
half of the supersymm etry to by adding a m ass term for the ad pint elds.
M ore generally, one can add an arbitrary potential for them , but this does
notm odify the discussion. A sdiscussed in section 3, there isalso an S° cycke
whose size is proportional to the vevs of the m assless fundam ental elds.
T he corresponding m atrix m odel is [13]:
z
Z= di.d,dodge’™ (1izR@) (54)

where ;areM; M;matroes, Q isM; M, matrix and

1 1
W (15 2;0;9)= —W( 1)+ —W,o( o)+ (55)
91 R

Trp 0 Q 101 ; (56)

W ;( ;) being polynom ials of ;.

T he above superpotential breaks supersymm etry toN = 1 and them od—
uli space is described by the expectations values for the ad pint elds ; and
for the bifundam ental eldsQ and Q . Taking the lin it of vanishing g, freezes

> to one ofthem Inima of W ,. Since we are interested in both m assive and
m asslkess avor elds, we assum e that only part of the diagonal entries of
are nonvanishing. A s the diagonalentries of , give them ass for the quarks,
we have then a solitting of Q and Q@ into m assive and m assless elds, the
potential for the m atrix m odel above being

Vum (;0;Q0)=W ( )+ Q; Qi)+ m;Q 4075 (57)

=1 =1

There is, however, m ore Inform ation which can be obtained from the
description of m assless avors in the previous sections. In particular, we had
to In pose boundary conditions on the cycls descrbing both m assive and
m asskess avors. Them ass term in the previous equation can be interpreted
n that sstup as arising because the noncom pact 2-cycle describing m assive
findam ental elds ends at one of the nonvanishingm inima ofW 5.

Tt is however clear that the above superpotential does not take into ac-
count the boundary conditions required for the cycle describing m assless
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avor elds. In the previous section we In posed the condition that the non—
com pact 2-cycles describing the m assless elds end on the curve which
is orthogonal to them at the points xed by the eigenvalues of the m eson
matrix. An equivalent way of stating this boundary condition is that the
holom orphic Chem-Sin ons action is evaluated w ith the constraint that the
m eson eigenvalues are xed.

W e can now supplm ent the potential Vyy with the appropriate con-
straint. In the weak coupling regin e the m eson is jist a bilinear In quarks
and antiquarks. Furthem ore, one can perform an SU (N ¢) global rotation
and replace the constraint that the eigenvalues ofQ ;Q'y are xed w ith the re-
quirem ent that Q ;Q’y issome xed m atrix. In principle, its eigenvalues should
be equal to those which appear in the original constraint. H owever, as they
were arbitrary, the corresponding m atrix is arbitrary. Thus, the partition
function ofm atrix m odelw ith m assive and m assless avors is:

z
Z=N ddo"dg"™do"do” @Y QY MyeVur (2D (58)

T he nom alization of this partition function requires division by the nverse
volum e of the m atrix m odel \gauge group” U N ). As in the orighalDV
proposal, this can be Interpreted asbeing part of the planar and boundaryless
free energy. Thus, its contribution to the superpotential is its derivative
muliplied by the rank of the gauge group (the unbroken as well as the
broken part!).

T he equation [B8) recovers the suggestion 4] for the inclusion ofm assless
quarks In the m atrix m odel, and is also equivalent [39] w ith the suggestion
of 30] that one rst deform sthem atrix m odelby m ass term s and then takes
them assless lin it. T his can be easily seen by using an integral representation
for the -function In equation [BJ) and noticing that the new variabl plays
the role of m ass param eter for the quarks Q" and Q" .

For illustration purposes, ket us brie y analyze the case of a quadratic
superpotential for the adpint eld and recover equation (BJ). W e will also
concentrate on the term s linear In N ¢ . In the cases covered by our analysis,
this can be understood as arising from the largeN lin it for them atrix m odel
gauge group .

T he easiest way to go about com puting the free energy in thisregin e isto
represent it as a sum of vacuum Feynm an diagram s and furtherm ore notice
that any diagram contains exactly one species of quarks. Thus, the fiee
energy receives two independent contributions, one from the m assive quarks
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and the other from the m asskss ones. The integral over m assive quarks is
com puted as in 21l] and gives
z

1 . 1 M Mo, 1 2
7 = e gSFmassme d dQ M dQM (Qbf Q/Dj’l M lj)e ggTr[Q Qo + >Ma )] (59)

w here

Ve
Frassive = F ;) (60)
i=1
F (m) S ! ! (ql 4 .S 1)+ In lql 4 .S
= — n + —+ = n
2 4 .S 2
and m = ﬁlmﬂ'

T he next step is to Integrate out the adjpint eld, as a gaussian integral
which in plies the appearance of Tr[(Q" O™ )?]. The ram aining integrand is
then expressed only in temm s of the bilinear @ Q™ ) and it can be pulled
out of the Integral because of the -function. Furthem ore, this Integral is
also part of the planar and boundaryless free energy. A s its contribution to
the superpotential is slightly di erent than the one of avor elds, we will
leave it aside for them om ent. Surely enough, we w illadd it back at the end.
W e are therefore left with:

1 1 2
g Fnassive t 2 TrM <]
7, e % mam

do™ dag™ (QbilI QVDJI-I M 45) (61)
where isa cuto ntroduced here for dim ensional reasons.

T he ram aining integralwas perform ed In (24]) and yilds:
h i

Z 1 on M
L ShdetM="f )N ¥smn
aoMdg" @Y gY¥ My =er o (62)
Combining all the pieces together, the result is that the part of the free
energy of the m atrix m odel arising from the integration over elds is given

by: 5 3

1§<? N Y
gsInZ = Fm;+S4h NS 63)

=1

detM

where isacuto .Clearly theU (N ¢) Invariance can be restored by replacing
the product of eigenvalues of the m eson m atrix w ith its determ inant.
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Adding to this the contribution of the nom alization coe cient N (ie.
the Veneziano-Y ankielow icz superpotential for the group U (N.)) as well as
the contribution of the integral over the ad pint eld recovers equation @),
proving that them atrix m odel (58) describes the fullnonperturbative physics
of the gauge theory.

6 Conclusions

The main goal of our work was to 1l cartain gaps in understanding the
relation between the gauge theories, geom etry and m atrix m odels for eld
theories with elds transform ing In the fiindam ental representation of the
gauge group .

W e described in detail the geom etric construction of a supersym m etry—
breaking m ass tetm of nite size for the adpint eld in the smplest N =
2 theory and analyzed the inclusion of m assive and m asskess elds in the
fiundam entalrepresentation. T he gauge theory described by this construction
isN = 1 SQCD wih massive and m assless quarks coupled w ith an adpint

eld of nite mass through a Yukawa coupling. Analyzing the geom etric
transition for this construction we com puted the e ective superpotential for
this theory em phasizing the contribution of m assless quarks as well as that
of the nite adjpintm ass.

U sing the inform ation we gained from this analysis we reconsidered the
geom etry prior to the geom etric transition . For theories w ithout elds trans-
form Ing in the findam ental representation this was the starting point which
lad to the DV proposal. W hik the inclusion of m assive quarks in this
fram ework was easily achieved w ithout reference to geom etry, certain di —
culties were encountered in dealing w ith m assless ones. T he two solutions to
this problem , proposed in [24] and [30] on a eld-theoretic kasis only, were
shown to be equivalent in [39]. From our analysis we see that this denti ca—
tion appears naturally from the geom etrical picture and its relation to brane
con gurations. A s was em phasized before (see [10]-13]), the brane con gu-
rations represent a very usefiil toolin the description of geom etric transitions
and even m ore so In the light of the new correspondences between geom etry,

eld theordes and m atrix m odels.

Finalky, we illustrated the use of the m atrix m odel we constructed and
recovered the e ective superpotential com puted from geom etric and topolog-
ical considerations and found an exact agreem ent.
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T here are several directionswhich can be pursued further. A swe describe
the case ofm assless avors, it would be interesting to use D 6 branes instead of
D 4 branes. O ne iInm ediate problm is pushing them through the T duality
which gives a geom etric description to the brane con guration, as naively
they becom e D 5 branes passing through the interior of the P!, which does
not belong to the space.

Another Interesting direction is to consider brane con gurations corre-
goonding to chiral theories; T duality transform ations would m ap them to
geom etries which cannot be ocbtained from N = 2 ones by deform ations. If
possible, these would becom e an extension of the original conctures to the
chiral case. Form any m odels of brane con gurations see [49].
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